62.38.9 problem Ex 9

Internal problem ID [12941]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 62. Summary. Page 144
Problem number : Ex 9
Date solved : Wednesday, March 05, 2025 at 08:54:18 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \ln \left (-\sin \left (x \right ) c_{1} +\cos \left (x \right ) c_{2} \right ) \]
Mathematica. Time used: 0.815 (sec). Leaf size: 40
ode=D[y[x],{x,2}]+D[y[x],x]^2+1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \int _1^x\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ][c_1-K[2]]dK[2]+c_2 \]
Sympy. Time used: 1.125 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {\log {\left (\tan ^{2}{\left (C_{2} - x \right )} + 1 \right )}}{2}, \ y{\left (x \right )} = C_{1} - \frac {\log {\left (\tan ^{2}{\left (C_{2} - x \right )} + 1 \right )}}{2}\right ] \]