63.1.1 problem 1(a)

Internal problem ID [12946]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 1, First order differential equations. Section 1.1 First order equations. Exercises page 10
Problem number : 1(a)
Date solved : Wednesday, March 05, 2025 at 08:54:26 PM
CAS classification : [_separable]

\begin{align*} x^{\prime }&=\frac {2 x}{t} \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 9
ode:=diff(x(t),t) = 2*x(t)/t; 
dsolve(ode,x(t), singsol=all);
 
\[ x \left (t \right ) = c_{1} t^{2} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 16
ode=D[x[t],t]==2*x[t]/t; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to c_1 t^2 \\ x(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(Derivative(x(t), t) - 2*x(t)/t,0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} t^{2} \]