63.5.29 problem 15(d)

Internal problem ID [13024]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 1, First order differential equations. Section 1.4.1. Integrating factors. Exercises page 41
Problem number : 15(d)
Date solved : Wednesday, March 05, 2025 at 08:57:52 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} t^{2} y^{\prime }+2 t y-y^{2}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=t^2*diff(y(t),t)+2*t*y(t)-y(t)^2 = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {3 t}{3 c_{1} t^{3}+1} \]
Mathematica. Time used: 0.171 (sec). Leaf size: 24
ode=t^2*D[y[t],t]+2*t*y[t]-y[t]^2==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to \frac {3 t}{1+3 c_1 t^3} \\ y(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.234 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), t) + 2*t*y(t) - y(t)**2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {3 t}{C_{1} t^{3} + 1} \]