7.11.51 problem 53

Internal problem ID [372]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.5 (Nonhomogeneous equations and undetermined coefficients). Problems at page 161
Problem number : 53
Date solved : Tuesday, March 04, 2025 at 11:14:28 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=2 \sec \left (3 x \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 33
ode:=diff(diff(y(x),x),x)+9*y(x) = 2*sec(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2 \ln \left (\sec \left (3 x \right )\right ) \cos \left (3 x \right )}{9}+\cos \left (3 x \right ) c_1 +\frac {2 \sin \left (3 x \right ) \left (x +\frac {3 c_2}{2}\right )}{3} \]
Mathematica. Time used: 0.033 (sec). Leaf size: 39
ode=D[y[x],{x,2}]+9*y[x]==2*Sec[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{3} (2 x+3 c_2) \sin (3 x)+\cos (3 x) \left (\frac {2}{9} \log (\cos (3 x))+c_1\right ) \]
Sympy. Time used: 0.249 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + Derivative(y(x), (x, 2)) - 2/cos(3*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + \frac {2 x}{3}\right ) \sin {\left (3 x \right )} + \left (C_{2} + \frac {2 \log {\left (\cos {\left (3 x \right )} \right )}}{9}\right ) \cos {\left (3 x \right )} \]