Internal
problem
ID
[377]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
2.
Linear
Equations
of
Higher
Order.
Section
2.5
(Nonhomogeneous
equations
and
undetermined
coefficients).
Problems
at
page
161
Problem
number
:
58
Date
solved
:
Tuesday, March 04, 2025 at 11:14:43 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = x^3; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)