64.11.17 problem 17

Internal problem ID [13467]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number : 17
Date solved : Tuesday, January 28, 2025 at 05:44:38 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=2 x^{2}+4 \sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 30

dsolve(diff(y(x),x$3)+diff(y(x),x)=2*x^2+4*sin(x),y(x), singsol=all)
 
\[ y = \left (-2-c_{2} \right ) \cos \left (x \right )+\left (c_{1} -2 x \right ) \sin \left (x \right )+\frac {2 x^{3}}{3}-4 x +c_{3} \]

Solution by Mathematica

Time used: 60.208 (sec). Leaf size: 82

DSolve[D[y[x],{x,3}]+D[y[x],x]==2*x^2+4*Sin[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \int _1^x\left (c_1 \cos (K[3])+\int _1^{K[3]}-2 \sin (K[1]) \left (K[1]^2+2 \sin (K[1])\right )dK[1] \cos (K[3])+c_2 \sin (K[3])+\sin (K[3]) \int _1^{K[3]}2 \cos (K[2]) \left (K[2]^2+2 \sin (K[2])\right )dK[2]\right )dK[3]+c_3 \]