Internal
problem
ID
[13089]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
2,
Second
order
linear
equations.
Section
2.4.2
Variation
of
parameters.
Exercises
page
124
Problem
number
:
1(f)
Date
solved
:
Wednesday, March 05, 2025 at 09:17:09 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(x(t),t),t)-2*diff(x(t),t)+x(t) = 1/2/t*exp(t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]-2*D[x[t],t]+x[t]==1/(2*t)*Exp[t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(x(t) - 2*Derivative(x(t), t) + Derivative(x(t), (t, 2)) - exp(t)/(2*t),0) ics = {} dsolve(ode,func=x(t),ics=ics)