63.15.2 problem 6(b)

Internal problem ID [13106]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156
Problem number : 6(b)
Date solved : Wednesday, March 05, 2025 at 09:17:25 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} x^{\prime }+x&=\sin \left (2 t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} x \left (0\right )&=0 \end{align*}

Maple. Time used: 8.121 (sec). Leaf size: 23
ode:=diff(x(t),t)+x(t) = sin(2*t); 
ic:=x(0) = 0; 
dsolve([ode,ic],x(t),method='laplace');
 
\[ x \left (t \right ) = \frac {2 \,{\mathrm e}^{-t}}{5}-\frac {2 \cos \left (2 t \right )}{5}+\frac {\sin \left (2 t \right )}{5} \]
Mathematica. Time used: 0.072 (sec). Leaf size: 28
ode=D[x[t],t]+x[t]==Sin[2*t]; 
ic={x[0]==0}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ x(t)\to e^{-t} \int _0^te^{K[1]} \sin (2 K[1])dK[1] \]
Sympy. Time used: 0.154 (sec). Leaf size: 24
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) - sin(2*t) + Derivative(x(t), t),0) 
ics = {x(0): 0} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \frac {\sin {\left (2 t \right )}}{5} - \frac {2 \cos {\left (2 t \right )}}{5} + \frac {2 e^{- t}}{5} \]