63.17.4 problem 6
Internal
problem
ID
[13124]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.4
Impulsive
sources.
Exercises
page
173
Problem
number
:
6
Date
solved
:
Wednesday, March 05, 2025 at 09:17:49 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} x^{\prime \prime }+4 x&=\delta \left (t -2\right )-\delta \left (t -5\right ) \end{align*}
Using Laplace method With initial conditions
\begin{align*} x \left (0\right )&=0\\ x^{\prime }\left (0\right )&=0 \end{align*}
✓ Maple. Time used: 10.032 (sec). Leaf size: 29
ode:=diff(diff(x(t),t),t)+4*x(t) = Dirac(t-2)-Dirac(t-5);
ic:=x(0) = 0, D(x)(0) = 0;
dsolve([ode,ic],x(t),method='laplace');
\[
x \left (t \right ) = -\frac {\operatorname {Heaviside}\left (t -5\right ) \sin \left (-10+2 t \right )}{2}+\frac {\operatorname {Heaviside}\left (t -2\right ) \sin \left (2 t -4\right )}{2}
\]
✓ Mathematica. Time used: 0.127 (sec). Leaf size: 140
ode=D[x[t],{t,2}]+4*x[t]==DiracDelta[t-2]-DiracDelta[t-5];
ic={x[0]==0,Derivative[1][x][0 ]==0};
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
\[
x(t)\to -\sin (2 t) \int _1^0-\frac {1}{2} \cos (2 K[2]) (\delta (K[2]-5)-\delta (K[2]-2))dK[2]+\sin (2 t) \int _1^t-\frac {1}{2} \cos (2 K[2]) (\delta (K[2]-5)-\delta (K[2]-2))dK[2]-\cos (2 t) \int _1^0\cos (K[1]) (\delta (K[1]-5)-\delta (K[1]-2)) \sin (K[1])dK[1]+\cos (2 t) \int _1^t\cos (K[1]) (\delta (K[1]-5)-\delta (K[1]-2)) \sin (K[1])dK[1]
\]
✓ Sympy. Time used: 2.484 (sec). Leaf size: 107
from sympy import *
t = symbols("t")
x = Function("x")
ode = Eq(Dirac(t - 5) - Dirac(t - 2) + 4*x(t) + Derivative(x(t), (t, 2)),0)
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0}
dsolve(ode,func=x(t),ics=ics)
\[
x{\left (t \right )} = \left (- \frac {\int \left (- \operatorname {Dirac}{\left (t - 5 \right )} + \operatorname {Dirac}{\left (t - 2 \right )}\right ) \sin {\left (2 t \right )}\, dt}{2} + \frac {\int \limits ^{0} \left (- \operatorname {Dirac}{\left (t - 5 \right )} \sin {\left (2 t \right )}\right )\, dt}{2} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \right )} \sin {\left (2 t \right )}\, dt}{2}\right ) \cos {\left (2 t \right )} + \left (\frac {\int \left (- \operatorname {Dirac}{\left (t - 5 \right )} + \operatorname {Dirac}{\left (t - 2 \right )}\right ) \cos {\left (2 t \right )}\, dt}{2} - \frac {\int \limits ^{0} \left (- \operatorname {Dirac}{\left (t - 5 \right )} \cos {\left (2 t \right )}\right )\, dt}{2} - \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \right )} \cos {\left (2 t \right )}\, dt}{2}\right ) \sin {\left (2 t \right )}
\]