64.13.8 problem 8

Internal problem ID [13538]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 05:52:15 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+9 y&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 19

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} \sin \left (3 \ln \left (x \right )\right )+c_{2} \cos \left (3 \ln \left (x \right )\right ) \]

Solution by Mathematica

Time used: 0.020 (sec). Leaf size: 22

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \cos (3 \log (x))+c_2 \sin (3 \log (x)) \]