64.13.10 problem 10

Internal problem ID [13540]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number : 10
Date solved : Tuesday, January 28, 2025 at 05:52:18 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y&=0 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 19

dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+10*y(x)=0,y(x), singsol=all)
 
\[ y = x^{3} \left (c_{1} \sin \left (\ln \left (x \right )\right )+c_{2} \cos \left (\ln \left (x \right )\right )\right ) \]

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 22

DSolve[x^2*D[y[x],{x,2}]-5*x*D[y[x],x]+10*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x^3 (c_2 \cos (\log (x))+c_1 \sin (\log (x))) \]