64.14.10 problem 10

Internal problem ID [13569]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number : 10
Date solved : Tuesday, January 28, 2025 at 05:53:07 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 54

Order:=6; 
dsolve((x+3)*diff(y(x),x$2)+(x+2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{6} x^{2}+\frac {1}{18} x^{3}-\frac {1}{216} x^{4}-\frac {7}{3240} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{2}+\frac {1}{36} x^{4}-\frac {1}{108} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 63

AsymptoticDSolveValue[(x+3)*D[y[x],{x,2}]+(x+2)*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{108}+\frac {x^4}{36}-\frac {x^2}{3}+x\right )+c_1 \left (-\frac {7 x^5}{3240}-\frac {x^4}{216}+\frac {x^3}{18}-\frac {x^2}{6}+1\right ) \]