64.4.1 problem 1

Internal problem ID [13211]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number : 1
Date solved : Wednesday, March 05, 2025 at 09:22:29 PM
CAS classification : [_separable]

\begin{align*} 4 x y+\left (x^{2}+1\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=4*x*y(x)+(x^2+1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1}}{\left (x^{2}+1\right )^{2}} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 20
ode=(4*x*y[x])+(x^2+1)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_1}{\left (x^2+1\right )^2} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.256 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*y(x) + (x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{4} + 2 x^{2} + 1} \]