64.16.8 problem 8

Internal problem ID [13611]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 05:53:51 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )+\frac {d}{d t}y \left (t \right )-x \left (t \right )-3 y \left (t \right )&=3 t\\ \frac {d}{d t}x \left (t \right )+2 \frac {d}{d t}y \left (t \right )-2 x \left (t \right )-3 y \left (t \right )&=1 \end{align*}

Solution by Maple

Time used: 0.045 (sec). Leaf size: 59

dsolve([diff(x(t),t)+diff(y(t),t)-x(t)-3*y(t)=3*t,diff(x(t),t)+2*diff(y(t),t)-2*x(t)-3*y(t)=1],singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\sqrt {3}\, t} c_{2} +{\mathrm e}^{-\sqrt {3}\, t} c_{1} +3 t -3 \\ y \left (t \right ) &= \frac {\sqrt {3}\, {\mathrm e}^{\sqrt {3}\, t} c_{2}}{3}-\frac {\sqrt {3}\, {\mathrm e}^{-\sqrt {3}\, t} c_{1}}{3}+\frac {4}{3}-2 t \\ \end{align*}

Solution by Mathematica

Time used: 4.596 (sec). Leaf size: 482

DSolve[{D[x[t],t]+D[y[t],t]-x[t]-3*y[t]==3*t,D[x[t],t]+2*D[y[t],t]-2*x[t]-3*y[t]==1},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{2} e^{-\sqrt {3} t} \left (\left (e^{2 \sqrt {3} t}+1\right ) \int _1^t\frac {1}{2} e^{-\sqrt {3} K[1]} \left (-3 \left (-2+\sqrt {3}\right ) K[1]+e^{2 \sqrt {3} K[1]} \left (3 \left (2+\sqrt {3}\right ) K[1]-\sqrt {3}-1\right )+\sqrt {3}-1\right )dK[1]+\sqrt {3} \left (e^{2 \sqrt {3} t}-1\right ) \int _1^t\frac {1}{6} e^{-\sqrt {3} K[2]} \left (\left (-9+6 \sqrt {3}\right ) K[2]+e^{2 \sqrt {3} K[2]} \left (-3 \left (3+2 \sqrt {3}\right ) K[2]+\sqrt {3}+3\right )-\sqrt {3}+3\right )dK[2]+c_1 e^{2 \sqrt {3} t}+\sqrt {3} c_2 e^{2 \sqrt {3} t}+c_1-\sqrt {3} c_2\right ) \\ y(t)\to \frac {1}{6} e^{-\sqrt {3} t} \left (\sqrt {3} \left (e^{2 \sqrt {3} t}-1\right ) \int _1^t\frac {1}{2} e^{-\sqrt {3} K[1]} \left (-3 \left (-2+\sqrt {3}\right ) K[1]+e^{2 \sqrt {3} K[1]} \left (3 \left (2+\sqrt {3}\right ) K[1]-\sqrt {3}-1\right )+\sqrt {3}-1\right )dK[1]+3 \left (e^{2 \sqrt {3} t}+1\right ) \int _1^t\frac {1}{6} e^{-\sqrt {3} K[2]} \left (\left (-9+6 \sqrt {3}\right ) K[2]+e^{2 \sqrt {3} K[2]} \left (-3 \left (3+2 \sqrt {3}\right ) K[2]+\sqrt {3}+3\right )-\sqrt {3}+3\right )dK[2]+\sqrt {3} c_1 e^{2 \sqrt {3} t}+3 c_2 e^{2 \sqrt {3} t}-\sqrt {3} c_1+3 c_2\right ) \\ \end{align*}