Internal
problem
ID
[13280]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
2,
Miscellaneous
Review.
Exercises
page
60
Problem
number
:
9
Date
solved
:
Wednesday, March 05, 2025 at 09:33:16 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=diff(y(x),x) = (4*x^3*y(x)^2-3*x^2*y(x))/(x^3-2*x^4*y(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(4*x^3*y[x]^2-3*x^2*y[x])/(x^3-2*x^4*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(4*x**3*y(x)**2 - 3*x**2*y(x))/(-2*x**4*y(x) + x**3) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)