64.23.8 problem 10

Internal problem ID [13685]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 12, Sturm-Liouville problems. Section 12.1, Exercises page 596
Problem number : 10
Date solved : Tuesday, January 28, 2025 at 05:55:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} -\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y \left (\pi \right )&=0 \end{align*}

Solution by Maple

Time used: 0.030 (sec). Leaf size: 5

dsolve([diff(1/(3*x^2+1)*diff(y(x),x),x)+lambda*(3*x^2+1)*y(x)=0,y(0) = 0, y(Pi) = 0],y(x), singsol=all)
 
\[ y = 0 \]

Solution by Mathematica

Time used: 0.323 (sec). Leaf size: 450

DSolve[{D[1/(3*x^2+1)*D[y[x],x],x]+\[Lambda]*(3*x^2+1)*y[x]==0,{y[0]==0,y[1]==0}},{y[x]},x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \begin {array}{cc} \{ & \begin {array}{cc} -\exp \left (\int _1^x-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right ) \sqrt {3 x^2+1} c_1 \left (\int _1^0\exp \left (-2 \int _1^{K[2]}-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right )dK[2]-\int _1^x\exp \left (-2 \int _1^{K[2]}-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right )dK[2]\right ) & 2 \exp \left (\int _1^0-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}+\int _1^1-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right ) \int _1^1\exp \left (-2 \int _1^{K[2]}-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right )dK[2]-2 \exp \left (\int _1^0-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}+\int _1^1-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right ) \int _1^0\exp \left (-2 \int _1^{K[2]}-\frac {3 i \left (\left (3 \unicode {f80d}^2+1\right )^2 \sqrt {\lambda }-3 i \unicode {f80d}\right )}{9 \unicode {f80d}^2+3}d\unicode {f80d}\right )dK[2]=0 \\ 0 & \text {True} \\ \end {array} \\ \end {array} \]