64.24.10 problem 10

Internal problem ID [13695]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 13, Nonlinear differential equations. Section 13.2, Exercises page 656
Problem number : 10
Date solved : Tuesday, January 28, 2025 at 05:55:22 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=a x \left (t \right )+b y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=c x \left (t \right )+d y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.247 (sec). Leaf size: 245

dsolve([diff(x(t),t)=a*x(t)+b*y(t),diff(y(t),t)=c*x(t)+d*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= c_{1} {\mathrm e}^{\frac {\left (a +d +\sqrt {a^{2}-2 a d +4 b c +d^{2}}\right ) t}{2}}+c_{2} {\mathrm e}^{-\frac {\left (-a -d +\sqrt {a^{2}-2 a d +4 b c +d^{2}}\right ) t}{2}} \\ y \left (t \right ) &= \left (\frac {d}{2 b}+\frac {\frac {\sqrt {a^{2}-2 a d +4 b c +d^{2}}}{2}-\frac {a}{2}}{b}\right ) c_{1} {\mathrm e}^{\frac {\left (a +d +\sqrt {a^{2}-2 a d +4 b c +d^{2}}\right ) t}{2}}+\left (\frac {{\mathrm e}^{-\frac {\left (-a -d +\sqrt {a^{2}-2 a d +4 b c +d^{2}}\right ) t}{2}} d}{2 b}+\frac {-\frac {{\mathrm e}^{-\frac {\left (-a -d +\sqrt {a^{2}-2 a d +4 b c +d^{2}}\right ) t}{2}} \sqrt {a^{2}-2 a d +4 b c +d^{2}}}{2}-\frac {{\mathrm e}^{-\frac {\left (-a -d +\sqrt {a^{2}-2 a d +4 b c +d^{2}}\right ) t}{2}} a}{2}}{b}\right ) c_{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 410

DSolve[{D[x[t],t]==a*x[t]+b*y[t],D[y[t],t]==c*x[t]+d*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {e^{\frac {1}{2} t \left (-\sqrt {a^2-2 a d+4 b c+d^2}+a+d\right )} \left (c_1 \sqrt {a^2-2 a d+4 b c+d^2} e^{t \sqrt {a^2-2 a d+4 b c+d^2}}+a c_1 \left (e^{t \sqrt {a^2-2 a d+4 b c+d^2}}-1\right )-c_1 d \left (e^{t \sqrt {a^2-2 a d+4 b c+d^2}}-1\right )+2 b c_2 e^{t \sqrt {a^2-2 a d+4 b c+d^2}}+c_1 \sqrt {a^2-2 a d+4 b c+d^2}-2 b c_2\right )}{2 \sqrt {a^2-2 a d+4 b c+d^2}} \\ y(t)\to \frac {e^{\frac {1}{2} t \left (-\sqrt {a^2-2 a d+4 b c+d^2}+a+d\right )} \left (2 c c_1 \left (e^{t \sqrt {a^2-2 a d+4 b c+d^2}}-1\right )+c_2 \left (a \left (-e^{t \sqrt {a^2-2 a d+4 b c+d^2}}\right )+d \left (e^{t \sqrt {a^2-2 a d+4 b c+d^2}}-1\right )+\sqrt {a^2-2 a d+4 b c+d^2} \left (e^{t \sqrt {a^2-2 a d+4 b c+d^2}}+1\right )+a\right )\right )}{2 \sqrt {a^2-2 a d+4 b c+d^2}} \\ \end{align*}