Internal
problem
ID
[782]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Chapter
1
review
problems.
Page
78
Problem
number
:
12
Date
solved
:
Monday, January 27, 2025 at 03:05:02 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.003 (sec). Leaf size: 25
\begin{align*}
y &= 0 \\
3 x^{2} y^{3}+2 x y^{4}+c_1 &= 0 \\
\end{align*}
Time used: 60.152 (sec). Leaf size: 1714
\begin{align*}
y(x)\to 0 \\
y(x)\to \frac {1}{2} \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}-\frac {1}{2} \sqrt {\frac {9 x^2}{8}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}-\frac {27 x^3}{32 \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}}}-\frac {3 x}{8} \\
y(x)\to \frac {1}{2} \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}+\frac {1}{2} \sqrt {\frac {9 x^2}{8}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}-\frac {27 x^3}{32 \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}}}-\frac {3 x}{8} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}-\frac {1}{2} \sqrt {\frac {9 x^2}{8}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}+\frac {27 x^3}{32 \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}}}-\frac {3 x}{8} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}+\frac {1}{2} \sqrt {\frac {9 x^2}{8}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}+\frac {27 x^3}{32 \sqrt {\frac {9 x^2}{16}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}+\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^3 \left (2187 x^5+2048 e^{c_1}\right )}-81 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x}}}}-\frac {3 x}{8} \\
\end{align*}