Internal
problem
ID
[13306]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
2,
Section
2.4.
Special
integrating
factors
and
transformations.
Exercises
page
67
Problem
number
:
11
Date
solved
:
Wednesday, March 05, 2025 at 09:42:37 PM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=6*x+4*y(x)+1+(4*x+2*y(x)+2)*diff(y(x),x) = 0; ic:=y(1/2) = 3; dsolve([ode,ic],y(x), singsol=all);
ode=(6*x+4*y[x]+1)+(4*x+2*y[x]+2)*D[y[x],x]==0; ic={y[1/2]==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x + (4*x + 2*y(x) + 2)*Derivative(y(x), x) + 4*y(x) + 1,0) ics = {y(1/2): 3} dsolve(ode,func=y(x),ics=ics)