64.9.5 problem 5

Internal problem ID [13324]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number : 5
Date solved : Wednesday, March 05, 2025 at 09:48:04 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-4 \left (x +1\right ) y^{\prime }+4 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{2 x} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 15
ode:=(2*x+1)*diff(diff(y(x),x),x)-4*(1+x)*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} c_{2} +c_{1} x +c_{1} \]
Mathematica. Time used: 0.18 (sec). Leaf size: 88
ode=(2*x+1)*D[y[x],{x,2}]-4*(x+1)*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {2 K[1]}{2 K[1]+1}dK[1]-\frac {1}{2} \int _1^x\left (-2-\frac {2}{2 K[2]+1}\right )dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {2 K[1]}{2 K[1]+1}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x + 1)*Derivative(y(x), (x, 2)) - (4*x + 4)*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False