64.10.9 problem 9

Internal problem ID [13336]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135
Problem number : 9
Date solved : Wednesday, March 05, 2025 at 09:48:18 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+13*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (c_{1} \sin \left (3 x \right )+c_{2} \cos \left (3 x \right )\right ) \]
Mathematica. Time used: 0.018 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-4*D[y[x],x]+13*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{2 x} (c_2 \cos (3 x)+c_1 \sin (3 x)) \]
Sympy. Time used: 0.159 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(13*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )}\right ) e^{2 x} \]