64.10.20 problem 20

Internal problem ID [13347]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135
Problem number : 20
Date solved : Wednesday, March 05, 2025 at 09:48:34 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 25
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 x +c_{3} \right ) {\mathrm e}^{-x}+{\mathrm e}^{2 x} c_{1} +{\mathrm e}^{x} c_{2} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 33
ode=D[y[x],{x,4}]-D[y[x],{x,3}]-3*D[y[x],{x,2}]+D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (c_2 x+e^{2 x} \left (c_4 e^x+c_3\right )+c_1\right ) \]
Sympy. Time used: 0.144 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) - Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + C_{4} e^{2 x} + \left (C_{1} + C_{2} x\right ) e^{- x} \]