Internal
problem
ID
[13367]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.2.
The
homogeneous
linear
equation
with
constant
coefficients.
Exercises
page
135
Problem
number
:
40
Date
solved
:
Wednesday, March 05, 2025 at 09:49:16 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)+4*diff(y(x),x)-8*y(x) = 0; ic:=y(0) = 2, D(y)(0) = 0, (D@@2)(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,3}]-2*D[y[x],{x,2}]+4*D[y[x],x]-8*y[x]==0; ic={y[0]==2,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*y(x) + 4*Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 0} dsolve(ode,func=y(x),ics=ics)