64.11.2 problem 2

Internal problem ID [13373]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number : 2
Date solved : Wednesday, March 05, 2025 at 09:49:43 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 28
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)-8*y(x) = 4*exp(2*x)-21*exp(-3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (-2 \,{\mathrm e}^{7 x} c_{1} +{\mathrm e}^{5 x}-2 \,{\mathrm e}^{x} c_{2} +6\right ) {\mathrm e}^{-3 x}}{2} \]
Mathematica. Time used: 0.147 (sec). Leaf size: 38
ode=D[y[x],{x,2}]-2*D[y[x],x]-8*y[x]==4*Exp[2*x]-21*Exp[-3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {1}{2} e^{-3 x} \left (e^{5 x}+6\right )+c_1 e^{-2 x}+c_2 e^{4 x} \]
Sympy. Time used: 0.260 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x) - 4*exp(2*x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 21*exp(-3*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{4 x} - \frac {e^{2 x}}{2} - 3 e^{- 3 x} \]