65.12.1 problem 19.1 (i)

Internal problem ID [13796]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 19, CauchyEuler equations. Exercises page 174
Problem number : 19.1 (i)
Date solved : Tuesday, January 28, 2025 at 06:03:44 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0\\ y^{\prime }\left (1\right )&=1 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 11

dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(1) = 0, D(y)(1) = 1],y(x), singsol=all)
 
\[ y = x^{2} \left (x -1\right ) \]

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 12

DSolve[{x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0,{y[1]==0,Derivative[1][y][1]==1}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (x-1) x^2 \]