7.13.15 problem 15

Internal problem ID [414]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.1 (Introduction). Problems at page 206
Problem number : 15
Date solved : Thursday, March 13, 2025 at 03:35:52 PM
CAS classification : [_separable]

\begin{align*} x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 14
Order:=6; 
ode:=x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1}{x}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 9
ode=x*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_1}{x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
ValueError : ODE x*Derivative(y(x), x) + y(x) does not match hint 1st_power_series