66.1.24 problem Problem 35

Internal problem ID [13871]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 35
Date solved : Tuesday, January 28, 2025 at 06:06:34 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

dsolve(diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)
 
\[ y = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_{1} -\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{c_{1} \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]

Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 197

DSolve[D[y[x],x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {-i x^2 \left (2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+c_1 \left (\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )-\operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )} \\ y(x)\to \frac {i x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )} \\ \end{align*}