66.1.28 problem Problem 40

Internal problem ID [13875]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 40
Date solved : Tuesday, January 28, 2025 at 06:06:39 AM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x -y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Solution by Maple

Time used: 0.207 (sec). Leaf size: 37

dsolve([diff(y(x),x)=x-y(x)^2,y(1) = 0],y(x), singsol=all)
 
\[ y = \frac {\operatorname {AiryBi}\left (1, 1\right ) \operatorname {AiryAi}\left (1, x\right )-\operatorname {AiryBi}\left (1, x\right ) \operatorname {AiryAi}\left (1, 1\right )}{\operatorname {AiryBi}\left (1, 1\right ) \operatorname {AiryAi}\left (x \right )-\operatorname {AiryBi}\left (x \right ) \operatorname {AiryAi}\left (1, 1\right )} \]

Solution by Mathematica

Time used: 0.150 (sec). Leaf size: 229

DSolve[{D[y[x],x]==x-y[x]^2,{y[1]==0}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {i \left (x^{3/2} \left (-\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2 i}{3}\right )+i \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 i}{3}\right )+\operatorname {BesselJ}\left (\frac {2}{3},\frac {2 i}{3}\right )\right ) \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+x^{3/2} \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2 i}{3}\right ) \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {2}{3},\frac {2 i}{3}\right ) \left (x^{3/2} \left (-\operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )\right )-i \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )\right )\right )}{x \left (2 \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2 i}{3}\right ) \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )+\left (-\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2 i}{3}\right )+i \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 i}{3}\right )+\operatorname {BesselJ}\left (\frac {2}{3},\frac {2 i}{3}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{3},\frac {2}{3} i x^{3/2}\right )\right )} \]