66.3.2 problem Problem 3

Internal problem ID [13945]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 3, SYSTEMS OF DIFFERENTIAL EQUATIONS. Problems page 209
Problem number : Problem 3
Date solved : Tuesday, January 28, 2025 at 06:09:20 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )+5 x \left (t \right )+y \left (t \right )&={\mathrm e}^{t}\\ \frac {d}{d t}y \left (t \right )-x \left (t \right )-3 y \left (t \right )&={\mathrm e}^{2 t} \end{align*}

Solution by Maple

Time used: 0.109 (sec). Leaf size: 101

dsolve([diff(x(t),t)+5*x(t)+y(t)=exp(t),diff(y(t),t)-x(t)-3*y(t)=exp(2*t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\left (-1+\sqrt {15}\right ) t} c_{2} +{\mathrm e}^{-\left (1+\sqrt {15}\right ) t} c_{1} +\frac {{\mathrm e}^{2 t}}{6}+\frac {2 \,{\mathrm e}^{t}}{11} \\ y \left (t \right ) &= -{\mathrm e}^{\left (-1+\sqrt {15}\right ) t} c_{2} \sqrt {15}+{\mathrm e}^{-\left (1+\sqrt {15}\right ) t} c_{1} \sqrt {15}-4 \,{\mathrm e}^{\left (-1+\sqrt {15}\right ) t} c_{2} -4 \,{\mathrm e}^{-\left (1+\sqrt {15}\right ) t} c_{1} -\frac {{\mathrm e}^{t}}{11}-\frac {7 \,{\mathrm e}^{2 t}}{6} \\ \end{align*}

Solution by Mathematica

Time used: 1.962 (sec). Leaf size: 206

DSolve[{D[x[t],t]+5*x[t]+y[t]==Exp[t],D[y[t],t]-x[t]-3*y[t]==Exp[2*t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{330} e^{-\left (\left (1+\sqrt {15}\right ) t\right )} \left (60 e^{\left (2+\sqrt {15}\right ) t}+55 e^{\left (3+\sqrt {15}\right ) t}-11 \left (\left (4 \sqrt {15}-15\right ) c_1+\sqrt {15} c_2\right ) e^{2 \sqrt {15} t}+11 \left (\left (15+4 \sqrt {15}\right ) c_1+\sqrt {15} c_2\right )\right ) \\ y(t)\to -\frac {1}{330} e^{-\left (\left (1+\sqrt {15}\right ) t\right )} \left (30 e^{\left (2+\sqrt {15}\right ) t}+385 e^{\left (3+\sqrt {15}\right ) t}-11 \left (\sqrt {15} c_1+\left (15+4 \sqrt {15}\right ) c_2\right ) e^{2 \sqrt {15} t}+11 \left (\sqrt {15} c_1+\left (4 \sqrt {15}-15\right ) c_2\right )\right ) \\ \end{align*}