Internal
problem
ID
[13568]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
4
Date
solved
:
Wednesday, March 05, 2025 at 10:03:53 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+diff(y(t),t)-12*y(t) = 0; ic:=y(0) = 4, D(y)(0) = -1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]-12*y[t]==0; ic={y[0]==4,Derivative[1][y][0]==-1}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-12*y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 4, Subs(Derivative(y(t), t), t, 0): -1} dsolve(ode,func=y(t),ics=ics)