Internal
problem
ID
[13588]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
11,
The
nth
order
homogeneous
linear
differential
equation.
Section
11.8,
Exercises
page
583
Problem
number
:
1
(b)
Date
solved
:
Wednesday, March 05, 2025 at 10:04:21 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(1+2*t)*diff(diff(x(t),t),t)+t^3*diff(x(t),t)+x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=(2*t+1)*D[x[t],{t,2}]+t^3*D[x[t],t]+x[t]==0; ic={}; DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**3*Derivative(x(t), t) + (2*t + 1)*Derivative(x(t), (t, 2)) + x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics)
False