67.2.27 problem Problem 5(a)

Internal problem ID [13984]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 5(a)
Date solved : Tuesday, January 28, 2025 at 06:11:00 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right )&=x^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1\\ y^{\prime }\left (1\right )&=2 \end{align*}

Solution by Maple

dsolve([(x-3)*diff(y(x),x$2)+ln(x)*y(x)=x^2,y(1) = 1, D(y)(1) = 2],y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{(x-3)*D[y[x],{x,2}]+log[x]*y[x]==x^2,{y[1]==1,Derivative[1][y][1]==2}},y[x],x,IncludeSingularSolutions -> True]
 

Not solved