67.2.29 problem Problem 5(c)

Internal problem ID [13986]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 5(c)
Date solved : Tuesday, January 28, 2025 at 08:25:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.685 (sec). Leaf size: 100

dsolve([(x^2+1)*diff(y(x),x$2)+(x-1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)
 
\[ y = \frac {-20 \,{\mathrm e}^{\left (\frac {1}{4}-\frac {i}{4}\right ) \pi } \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}-\frac {i}{2}\right ], \frac {1}{2}\right ) \left (x +i\right )^{\frac {1}{2}+\frac {i}{2}} \operatorname {hypergeom}\left (\left [\frac {1}{2}-\frac {i}{2}, \frac {1}{2}+\frac {3 i}{2}\right ], \left [\frac {3}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )+20 \operatorname {hypergeom}\left (\left [\frac {1}{2}-\frac {i}{2}, \frac {1}{2}+\frac {3 i}{2}\right ], \left [\frac {3}{2}+\frac {i}{2}\right ], \frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )}{\left (10-10 i\right ) \left (\operatorname {hypergeom}\left (\left [1-i, 1+i\right ], \left [\frac {3}{2}-\frac {i}{2}\right ], \frac {1}{2}\right )-\operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}-\frac {i}{2}\right ], \frac {1}{2}\right )\right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}-\frac {i}{2}, \frac {1}{2}+\frac {3 i}{2}\right ], \left [\frac {3}{2}+\frac {i}{2}\right ], \frac {1}{2}\right )+\left (-1+7 i\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}+\frac {3 i}{2}, \frac {3}{2}-\frac {i}{2}\right ], \left [\frac {5}{2}+\frac {i}{2}\right ], \frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}-\frac {i}{2}\right ], \frac {1}{2}\right )} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{(x^2+1)*D[y[x],{x,2}]+(x-1)*D[y[x],x]+y[x]==0,{y[0]==0,Derivative[1][y][0] ==1}},y[x],x,IncludeSingularSolutions -> True]
 

Not solved