64.22.12 problem 7(a)

Internal problem ID [13598]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 11, The nth order homogeneous linear differential equation. Section 11.8, Exercises page 583
Problem number : 7(a)
Date solved : Wednesday, March 05, 2025 at 10:04:38 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{\prime \prime }+\left (t +1\right ) x&=0 \end{align*}

Maple. Time used: 0.055 (sec). Leaf size: 21
ode:=diff(diff(x(t),t),t)+(t+1)*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x \left (t \right ) = c_{1} \operatorname {AiryAi}\left (-t -1\right )+c_{2} \operatorname {AiryBi}\left (-t -1\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 32
ode=D[x[t],{t,2}]+(t+1)*x[t]==0; 
ic={}; 
DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
 
\[ x(t)\to c_1 \operatorname {AiryAi}\left (\sqrt [3]{-1} (t+1)\right )+c_2 \operatorname {AiryBi}\left (\sqrt [3]{-1} (t+1)\right ) \]
Sympy. Time used: 0.073 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq((t + 1)*x(t) + Derivative(x(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} Ai\left (- t - 1\right ) + C_{2} Bi\left (- t - 1\right ) \]