67.2.32 problem Problem 5(f)

Internal problem ID [13989]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 5(f)
Date solved : Tuesday, January 28, 2025 at 08:25:09 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 2.355 (sec). Leaf size: 486

dsolve([diff(y(x),x$2)-(x-1)*diff(y(x),x)+x^2*y(x)=tan(x),y(0) = 0, D(y)(0) = 0],y(x), singsol=all)
 
\[ \text {Expression too large to display} \]

Solution by Mathematica

Time used: 26.778 (sec). Leaf size: 4228

DSolve[{D[y[x],{x,2}]-(x-1)*D[y[x],x]+x^2*y[x]==Tan[x],{y[0]==0,Derivative[1][y][0] ==1}},y[x],x,IncludeSingularSolutions -> True]
 

Too large to display