Internal
problem
ID
[13632]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
5,
Trivial
differential
equations.
Exercises
page
33
Problem
number
:
5.4
(iii)
Date
solved
:
Wednesday, March 05, 2025 at 10:05:39 PM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(x(t),t) = 2*sin(t)^2; ic:=x(1/4*Pi) = 1/4*Pi; dsolve([ode,ic],x(t), singsol=all);
ode=D[x[t],t]==2*Sin[t]^2; ic={x[Pi/4]==Pi/4}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-2*sin(t)**2 + Derivative(x(t), t),0) ics = {x(pi/4): pi/4} dsolve(ode,func=x(t),ics=ics)