Internal
problem
ID
[13672]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
12,
Homogeneous
second
order
linear
equations.
Exercises
page
118
Problem
number
:
12.1
(ii)
Date
solved
:
Wednesday, March 05, 2025 at 10:11:27 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 0; ic:=y(0) = 0, D(y)(0) = 3; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 3} dsolve(ode,func=y(x),ics=ics)