Internal
problem
ID
[13681]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
12,
Homogeneous
second
order
linear
equations.
Exercises
page
118
Problem
number
:
12.1
(xi)
Date
solved
:
Wednesday, March 05, 2025 at 10:11:51 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=4*diff(diff(x(t),t),t)-20*diff(x(t),t)+21*x(t) = 0; ic:=x(0) = -4, D(x)(0) = -12; dsolve([ode,ic],x(t), singsol=all);
ode=4*D[x[t],{t,2}]-20*D[x[t],t]+21*x[t]==0; ic={x[0]==-4,Derivative[1][x][0 ]==-12}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(21*x(t) - 20*Derivative(x(t), t) + 4*Derivative(x(t), (t, 2)),0) ics = {x(0): -4, Subs(Derivative(x(t), t), t, 0): -12} dsolve(ode,func=x(t),ics=ics)