Internal
problem
ID
[13689]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
14,
Inhomogeneous
second
order
linear
equations.
Exercises
page
140
Problem
number
:
14.1
(iv)
Date
solved
:
Wednesday, March 05, 2025 at 10:12:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(x(t),t),t)+diff(x(t),t)-2*x(t) = exp(t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]+D[x[t],t]-2*x[t]==Exp[t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-2*x(t) - exp(t) + Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)