67.5.4 problem Problem 1(d)

Internal problem ID [14090]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 6. Introduction to Systems of ODEs. Problems page 408
Problem number : Problem 1(d)
Date solved : Tuesday, January 28, 2025 at 06:14:11 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime } t -y \ln \left (t \right )&=\cos \left (2 t \right ) \end{align*}

Solution by Maple

dsolve(diff(y(t),t$2)+t*diff(y(t),t)-y(t)*ln(t)=cos(2*t),y(t), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[t],{t,2}]+t*D[y[t],t]-y[t]*Log[t]==Cos[2*t],y[t],t,IncludeSingularSolutions -> True]
 

Not solved