Internal
problem
ID
[13710]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
17,
Reduction
of
order.
Exercises
page
162
Problem
number
:
17.6
Date
solved
:
Wednesday, March 05, 2025 at 10:13:24 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=tan(t)*diff(diff(x(t),t),t)-3*diff(x(t),t)+(tan(t)+3*cot(t))*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=Tan[t]*D[x[t],{t,2}]-3*D[x[t],t]+(Tan[t]+3*Cot[t])*x[t]==0; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq((tan(t) + 3/tan(t))*x(t) + tan(t)*Derivative(x(t), (t, 2)) - 3*Derivative(x(t), t),0) ics = {} dsolve(ode,func=x(t),ics=ics)
NotImplementedError : The given ODE -((x(t) + Derivative(x(t), (t, 2)))*tan(t)**2/3 + x(t))/tan(t) + Derivative(x(t), t) cannot be solved by the factorable group method