Internal
problem
ID
[13714]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
18,
The
variation
of
constants
formula.
Exercises
page
168
Problem
number
:
18.1
(iv)
Date
solved
:
Wednesday, March 05, 2025 at 10:13:34 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=t^2*diff(diff(x(t),t),t)-2*x(t) = t^3; dsolve(ode,x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]-2*x[t]==t^3; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-t**3 + t**2*Derivative(x(t), (t, 2)) - 2*x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics)