Internal
problem
ID
[13716]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
18,
The
variation
of
constants
formula.
Exercises
page
168
Problem
number
:
18.1
(vi)
Date
solved
:
Wednesday, March 05, 2025 at 10:13:39 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=(tan(x)^2-1)*diff(diff(y(x),x),x)-4*tan(x)^3*diff(y(x),x)+2*y(x)*sec(x)^4 = (tan(x)^2-1)*(1-2*sin(x)^2); dsolve(ode,y(x), singsol=all);
ode=(Tan[x]^2-1)*D[y[x],{x,2}]-4*Tan[x]^3*D[y[x],x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*sin(x)**2 - 1)*(tan(x)**2 - 1) + (tan(x)**2 - 1)*Derivative(y(x), (x, 2)) + 2*y(x)/cos(x)**4 - 4*tan(x)**3*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -((-cos(2*x) + Derivative(y(x), (x, 2)))*cos(x)**4*tan(x)**2 + (cos(2*x) - Derivative(y(x), (x, 2)))*cos(x)**4 + 2*y(x))/(4*cos(x)**4*tan(x)**3) + Derivative(y(x), x) cannot be solved by the factorable group method