Internal
problem
ID
[13718]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
19,
CauchyEuler
equations.
Exercises
page
174
Problem
number
:
19.1
(ii)
Date
solved
:
Wednesday, March 05, 2025 at 10:13:43 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=4*x^2*diff(diff(y(x),x),x)+y(x) = 0; ic:=y(1) = 1, D(y)(1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+y[x]==0; ic={y[1]==1,Derivative[1][y][1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + y(x),0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics)