Internal
problem
ID
[13721]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
19,
CauchyEuler
equations.
Exercises
page
174
Problem
number
:
19.1
(v)
Date
solved
:
Wednesday, March 05, 2025 at 10:13:51 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=x^2*diff(diff(z(x),x),x)+3*x*diff(z(x),x)+4*z(x) = 0; ic:=z(1) = 0, D(z)(1) = 5; dsolve([ode,ic],z(x), singsol=all);
ode=x^2*D[z[x],{x,2}]+3*x*z[x]+4*z[x]==0; ic={z[1]==0,Derivative[1][z][1]==5}; DSolve[{ode,ic},z[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") z = Function("z") ode = Eq(x**2*Derivative(z(x), (x, 2)) + 3*x*Derivative(z(x), x) + 4*z(x),0) ics = {z(1): 0, Subs(Derivative(z(x), x), x, 1): 5} dsolve(ode,func=z(x),ics=ics)