Internal
problem
ID
[13728]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
20,
Series
solutions
of
second
order
linear
equations.
Exercises
page
195
Problem
number
:
20.1
Date
solved
:
Wednesday, March 05, 2025 at 10:14:30 PM
CAS
classification
:
[_Gegenbauer]
Using series method with expansion around
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+n*(n+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+n*(n+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(n*(n + 1)*y(x) - 2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)