Internal
problem
ID
[13735]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
20,
Series
solutions
of
second
order
linear
equations.
Exercises
page
195
Problem
number
:
20.4
Date
solved
:
Wednesday, March 05, 2025 at 10:14:38 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-x^2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-x^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x) + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)