7.14.17 problem 17

Internal problem ID [442]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 17
Date solved : Tuesday, March 04, 2025 at 11:24:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 9
Order:=6; 
ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)-2*y(x) = 0; 
ic:=y(0) = 1, D(y)(0) = 0; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = x^{2}+1 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 8
ode=D[y[x],{x,2}]+x*D[y[x],x]-2*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to x^2+1 \]
Sympy. Time used: 0.716 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - 2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (x^{2} + 1\right ) + C_{1} x \left (\frac {x^{2}}{6} + 1\right ) + O\left (x^{6}\right ) \]