68.2.8 problem Problem 3.12

Internal problem ID [14153]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 3 Bessel functions. Problems page 89
Problem number : Problem 3.12
Date solved : Tuesday, January 28, 2025 at 06:16:07 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y&=\sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 158

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-nu^2)*y(x)=sin(x),y(x), singsol=all)
 
\[ y = -\frac {x^{-\nu +1} 2^{\nu -1} \operatorname {BesselJ}\left (\nu , x\right ) \Gamma \left (\nu +2\right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}-\frac {\nu }{2}, \frac {3}{4}-\frac {\nu }{2}, \frac {5}{4}-\frac {\nu }{2}\right ], \left [\frac {3}{2}, -\nu +1, \frac {3}{2}-\nu , \frac {3}{2}-\frac {\nu }{2}\right ], -x^{2}\right )}{\nu \left (\nu -1\right ) \left (\nu +1\right )}+\operatorname {BesselJ}\left (\nu , x\right ) c_{2} +\operatorname {BesselY}\left (\nu , x\right ) c_{1} -\frac {\pi 2^{-\nu -1} x^{\nu +1} \left (\cot \left (\pi \nu \right ) \operatorname {BesselJ}\left (\nu , x\right )-\operatorname {BesselY}\left (\nu , x\right )\right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}+\frac {\nu }{2}, \frac {3}{4}+\frac {\nu }{2}, \frac {\nu }{2}+\frac {1}{2}\right ], \left [\frac {3}{2}, \nu +1, \frac {3}{2}+\nu , \frac {3}{2}+\frac {\nu }{2}\right ], -x^{2}\right )}{\Gamma \left (\nu +2\right )} \]

Solution by Mathematica

Time used: 0.229 (sec). Leaf size: 72

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-\[Nu]^2)*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \operatorname {BesselJ}(\nu ,x) \int _1^x-\frac {\pi \operatorname {BesselY}(\nu ,K[1]) \sin (K[1])}{2 K[1]}dK[1]+\operatorname {BesselY}(\nu ,x) \int _1^x\frac {\pi \operatorname {BesselJ}(\nu ,K[2]) \sin (K[2])}{2 K[2]}dK[2]+c_1 \operatorname {BesselJ}(\nu ,x)+c_2 \operatorname {BesselY}(\nu ,x) \]