69.1.4 problem 4
Internal
problem
ID
[14157]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
4
Date
solved
:
Tuesday, January 28, 2025 at 06:16:20 AM
CAS
classification
:
[_rational]
\begin{align*} x y \left (1-{y^{\prime }}^{2}\right )&=\left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \end{align*}
✓ Solution by Maple
Time used: 0.382 (sec). Leaf size: 916
dsolve(x*y(x)*(1-diff(y(x),x)^2)=(x^2-y(x)^2-a^2)*diff(y(x),x),y(x), singsol=all)
\begin{align*}
y &= -i \left (a -x \right ) \\
y &= i \left (a -x \right ) \\
y &= -i \left (a +x \right ) \\
y &= i \left (a +x \right ) \\
y &= 0 \\
-\int _{\textit {\_b}}^{x}\frac {-y^{2}-a^{2}+\textit {\_a}^{2}-\sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}}{\textit {\_a} \left (\left (-y^{2}-\textit {\_a}^{2}+a^{2}\right ) \sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}+\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )\right )}d \textit {\_a} -2 \left (\int _{}^{y}\frac {4 \left (\frac {1}{4}+\left (\left (-\textit {\_f}^{2}+a^{2}-x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )\right ) \left (\int _{\textit {\_b}}^{x}-\frac {\left (\left (-\textit {\_a}^{2}-\textit {\_f}^{2}+a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+a^{4}+\textit {\_f}^{4}\right ) \textit {\_a}}{\sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}\, {\left (\left (-\textit {\_a}^{2}-\textit {\_f}^{2}+a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}\right )}^{2}}d \textit {\_a} \right )\right ) \textit {\_f}}{\left (-\textit {\_f}^{2}+a^{2}-x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}d \textit {\_f} \right )+c_{1} &= 0 \\
-\int _{\textit {\_b}}^{x}\frac {-y^{2}-a^{2}+\textit {\_a}^{2}+\sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}}{\textit {\_a} \left (\left (y^{2}+\textit {\_a}^{2}-a^{2}\right ) \sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}+\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )\right )}d \textit {\_a} -2 \left (\int _{}^{y}\frac {4 \left (\frac {1}{4}+\left (\left (\textit {\_f}^{2}-a^{2}+x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )\right ) \left (\int _{\textit {\_b}}^{x}\frac {\left (\left (\textit {\_a}^{2}+\textit {\_f}^{2}-a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+a^{4}+\textit {\_f}^{4}\right ) \textit {\_a}}{\sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}\, {\left (\left (\textit {\_a}^{2}+\textit {\_f}^{2}-a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}\right )}^{2}}d \textit {\_a} \right )\right ) \textit {\_f}}{\left (\textit {\_f}^{2}-a^{2}+x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}d \textit {\_f} \right )+c_{1} &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 0.354 (sec). Leaf size: 75
DSolve[x*y[x]*(1-D[y[x],x]^2)==(x^2-y[x]^2-a^2)*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \sqrt {c_1 \left (x^2-\frac {a^2}{1+c_1}\right )} \\
y(x)\to -i (a-x) \\
y(x)\to i (a-x) \\
y(x)\to -i (a+x) \\
y(x)\to i (a+x) \\
\end{align*}