66.1.18 problem Problem 18

Internal problem ID [13786]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 18
Date solved : Wednesday, March 05, 2025 at 10:16:28 PM
CAS classification : [_quadrature]

\begin{align*} y&={y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \end{align*}

Maple. Time used: 0.047 (sec). Leaf size: 247
ode:=y(x) = diff(y(x),x)^4-diff(y(x),x)^3-2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -2 \\ y &= \frac {12 \left (\frac {243}{16384}+\frac {\left (\frac {9}{64}-c_{1} +x \right ) \sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}}{16}+\frac {c_{1}^{2}}{2}+\left (-\frac {9}{64}-x \right ) c_{1} +\frac {9 x}{64}+\frac {x^{2}}{2}\right ) \left (27-192 c_{1} +192 x +24 \sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}\right )^{{2}/{3}}+24 \left (\frac {9}{64}-c_{1} +x +\frac {\sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}}{8}\right ) \left (x -c_{1} -\frac {7949}{1536}\right ) \left (27-192 c_{1} +192 x +24 \sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}\right )^{{1}/{3}}+\frac {27 \left (\frac {9}{64}-c_{1} +x \right ) \sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}}{2}+108 \left (x -c_{1} +\frac {9}{128}\right ) \left (x -c_{1} +\frac {27}{128}\right )}{\left (27-192 c_{1} +192 x +24 \sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}\right )^{{1}/{3}} \left (9-64 c_{1} +64 x +8 \sqrt {64}\, \sqrt {\left (x -c_{1} +\frac {9}{32}\right ) \left (x -c_{1} \right )}\right )} \\ \end{align*}
Mathematica
ode=y[x]==D[y[x],x]^4-D[y[x],x]^3-2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - Derivative(y(x), x)**4 + Derivative(y(x), x)**3 + 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : < not supported between instances of NoneType and y